Assisted Object Placement

Master’s Thesis – Andreas Kirsch

computer graphics & visualization
Motivation
Background

Assisted Object Placement
Andreas Kirsch
Background

Assisted Object Placement
Andreas Kirsch
Shadowgrounds Survivor

Assisted Object Placement
Andreas Kirsch
Assisted Object Placement
Andreas Kirsch

Goals
Goals

Assisted Object Placement
Andreas Kirsch
Overview

Level Designer

- Query volume
 - Probe context query
 - Neighborhood context query

+

Candidate list
Probe context
Probe samples – Example
Probe samples – Color
Probe samples – Distance
Probe samples – Occlusion
Probe placement
Probe placement
Probe placement

Assisted Object Placement
Andreas Kirsch
Probe placement – All directions
Probe placement – Relative position
Probe placement – Neighbors
Probe placement – Neighbors
Probe placement – Avg normals
Probe placement – Avg normals
Probe placement – Combined
Queries

Assisted Object Placement
Andreas Kirsch
Bidirectional match query
Bidirectional match query

\[S = \frac{\# \text{matches model}}{\# \text{samples model}} \cdot \frac{\# \text{matches query}}{\# \text{samples query}} \]
Importance-weighted queries
Importance-weighted queries

\[h(X) = - \ln P(X) \]
Configuration query
Configuration query
Algorithms

Assisted Object Placement
Andreas Kirsch
Naive implementation
Naive implementation
Naive implementation

Dataset B

Dataset A
Optimizations

Assisted Object Placement
Andreas Kirsch
First optimization

Dataset B

Dataset A
First optimization

Dataset B

Dataset A
First optimization
First optimization

Dataset B

Dataset A
First optimization

Dataset B

Dataset A
Second optimization

<table>
<thead>
<tr>
<th>Color</th>
<th>Distance</th>
<th>Occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8+8+8 bits</td>
<td>8 bits</td>
<td>8 bits</td>
</tr>
</tbody>
</table>
Second optimization

- **Color**: 3+4+4 bits
- **Distance**: 3-5 bits
- **Occ**: 2-3 bits

- **Total before optimization**: 8+8+8 bits
- **Total after optimization**: 3+4+4 bits + 3-5 bits + 2-3 bits
Second optimization

Packed probe sample
bit set
Second optimization

Packed probe sample sequence

Assisted Object Placement
Andreas Kirsch
Second optimization

Sampled model

Query volume
Second optimization

Sampled model

Query volume

Assisted Object Placement
Andreas Kirsch
Second optimization

Sampled model

Query volume
Second optimization
Second optimization

Sampled model

Query volume
Second optimization

Sampled model

Query volume

Assisted Object Placement
Andreas Kirsch
Second optimization

Sampled model

Query volume
Second optimization

Sampled model

Query volume
Neighborhood context
Neighborhood context
Neighborhood context
Neighborhood context
Comparing neighborhoods
Comparing neighborhoods
Comparing neighborhoods
Matching distance groups
Matching distance groups

Assisted Object Placement
Andreas Kirsch
Matching distance groups

Assisted Object Placement
Andreas Kirsch
Matching distance groups
Matching distance groups

Assisted Object Placement
Andreas Kirsch
Similarity measures

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\square_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\square_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\circ)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Assisted Object Placement
Andreas Kirsch
Rand similarity measure

\[R = \frac{m_{11} + m_{00}}{m_{11} + m_{10} + m_{01} + m_{00}} \]

<table>
<thead>
<tr>
<th></th>
<th>_</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>□₁</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>□₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>○</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Rand similarity measure

\[R = \frac{m_{11} + m_{00}}{m_{11} + m_{10} + m_{01} + m_{00}} \]

\[
\begin{array}{cccccccc}
 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\cdot & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\square_1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\square_2 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\bigcirc & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[= \frac{4}{6} \]
Rand similarity measure

\[R = \frac{m_{11} + m_{00}}{m_{11} + m_{10} + m_{01} + m_{00}} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>![dot]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![square]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>![square]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>![circle]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[= \frac{2}{6} \]
Rand similarity measure

\[R = \frac{m_{11} + m_{00}}{m_{11} + m_{10} + m_{01} + m_{00}} \]

\[
\begin{array}{ccccccc}
\cdot & 0 & 1 & 0 & 1 & 0 & 0 \\
\square_1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\square_2 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\bigcirc & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[= \frac{3}{6} \]
Jaccard index

\[R = \frac{m_{11}}{m_{11} + m_{10} + m_{01}} \]

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Assisted Object Placement
Andreas Kirsch
Jaccard index

\[R = \frac{m_{11}}{m_{11} + m_{10} + m_{01}} \]

\[
\begin{array}{cccccccc}
. & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline
\square_1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\square_2 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\bigcirc & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[= \frac{1}{3} \]
Jaccard index

\[R = \frac{m_{11}}{m_{11} + m_{10} + m_{01}} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[= \frac{1}{5} \]
Jaccard index

\[R = \frac{m_{11}}{m_{11} + m_{10} + m_{01}} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bullet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\square_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\square_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\bigcirc)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[= \frac{1}{4} \]
Importance-weighted Rand measure

\[
R = \frac{\sum \Phi_k \mathbb{1}_{\{\text{query}_k = \text{instance}_k\}}}{\sum \Phi_k}
\]

\[\Phi_k = h(\text{query}_k) + h(\text{instance}_k)\]
Importance-weighted Rand measure

\[R = \frac{\sum \Phi_k \mathbb{1}_{\{\text{query}_k = \text{instance}_k\}}}{\sum \Phi_k} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Importance-weighted Rand measure

\[R = \frac{\sum \Phi_k \mathbb{1}_{\{query_k = instance_k\}}}{\sum \Phi_k} \]

\[= \frac{\Phi_1 + \Phi_3 + \Phi_4 + \Phi_6}{\sum \Phi_k} \]
Importance-weighted Rand measure

\[R = \frac{\sum \Phi_k \mathbb{I}_{\{\text{query}_k = \text{instance}_k\}}}{\sum \Phi_k} \]

\[\begin{array}{ccccccc}
\bullet & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\square_1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\square_2 & 1 & 1 & 1 & 0 & 1 & 0 & \text{c}\text{c}\text{c} \\
\bigcirc & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[= \Phi_2 + \Phi_6 \]
Importance-weighted Rand measure

\[
R = \frac{\sum \Phi_k \mathbb{1}_{\{\text{query}_k = \text{instance}_k\}}}{\sum \Phi_k}
\]

\[
\begin{array}{cccccc}
0 & 1 & 0 & 1 & 0 & 0 \\
\begin{array}{cccccc}
\square_1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\square_2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\end{array}
\]

\[
= \frac{\Phi_1 + \Phi_3 + \Phi_4}{\sum \Phi_k}
\]
Combining context scores
Combining context scores
Combining context scores

\[S_{\text{final}} = S_{\text{probe}} \cdot S_{\text{neighborhood}} \]
Results

Assisted Object Placement
Andreas Kirsch
Validation
marin01_wakeup
Validation: probe context

<table>
<thead>
<tr>
<th># models</th>
<th># instances</th>
<th>avg rank (model frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>marine02_road</td>
<td>94</td>
<td>1396</td>
</tr>
<tr>
<td>marine01_wakeup</td>
<td>150</td>
<td>2066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>marine02_road</th>
<th>marine02_road (5)</th>
<th>marine01_wakeup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform bidirectional match</td>
<td>14.1</td>
<td>17.7</td>
<td>15.2</td>
</tr>
<tr>
<td>IW bidirectional match</td>
<td>12.9</td>
<td>17.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Configuration</td>
<td>10.5</td>
<td>16.0</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Validation: neighborhood context

<table>
<thead>
<tr>
<th></th>
<th># models</th>
<th># instances</th>
<th>avg rank (model frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>marine02_road</td>
<td>94</td>
<td>1396</td>
<td>17.15</td>
</tr>
<tr>
<td>marine01_wakeup</td>
<td>150</td>
<td>2066</td>
<td>21.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max random shift</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max distance</td>
<td>10</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Rand measure</td>
<td>0.38</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>IW measure</td>
<td>0.40</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>Jaccard index</td>
<td>0.38</td>
<td>0.43</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Assisted Object Placement
Andreas Kirsch
Validation: combined contexts

<table>
<thead>
<tr>
<th># models</th>
<th># instances</th>
<th>avg rank (model frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>marine02_road</td>
<td>94</td>
<td>1396</td>
</tr>
<tr>
<td>marine01_wakeup</td>
<td>150</td>
<td>2066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>marine02_road</th>
<th>marine02_road (5)</th>
<th>marine01_wakeup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand</td>
<td>IW</td>
<td>Jaccard</td>
</tr>
<tr>
<td>Uniform bidirectional</td>
<td>7.14</td>
<td>11.0</td>
</tr>
<tr>
<td>IW bidirectional</td>
<td>8.09</td>
<td>11.0</td>
</tr>
<tr>
<td>Configuration</td>
<td>11.1</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Performance

<table>
<thead>
<tr>
<th></th>
<th>Rand measure</th>
<th>Importance-weighted measure</th>
<th>Jaccard index</th>
</tr>
</thead>
<tbody>
<tr>
<td>marine02_road</td>
<td>9.5</td>
<td>11</td>
<td>9.5</td>
</tr>
<tr>
<td>marine01_wakeup</td>
<td>38</td>
<td>44</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bidirectional query</th>
<th>IW bidirectional query</th>
<th>Configuration query</th>
</tr>
</thead>
<tbody>
<tr>
<td>marine02_road</td>
<td>1.2</td>
<td>5.4</td>
<td>900</td>
</tr>
<tr>
<td>marine02_road (5)</td>
<td>14</td>
<td>93</td>
<td>18000</td>
</tr>
<tr>
<td>marine01_wakeup</td>
<td>2.4</td>
<td>11</td>
<td>1500</td>
</tr>
</tbody>
</table>
Summary
Post Mortem

Assisted Object Placement
Andreas Kirsch
Questions?
Demo