
Light Propagation Volumes - Annotations

Andreas Kirsch

July 17, 2010

1 Notation

f(x) := max{f(x), 0}

flux Φ of a light (energy / time)

radiant intensity I :=
dΦ

dω
, with direction ω

Φ =

∫
S2

I (ω) dω

radiance L :=
d2Φ

dAdω
, with area A

See Real-Time Rendering or Physically Based Rendering for more details. The notation
tries to stick to Real-Time Rendering.

2 Subtended Solid Angle Calculations

It is necessary to calculate the solid angle of certain shapes as seen from the unit sphere.
This solid angle is called the subtended solid angle (of the shape).

There are multiple ways to calculate the solid angle of a simple shape. Crytek’s LPV
paper needs the subtended solid angle of squares with different orientations relative to
the origin of the unit sphere:

• back face of the neighboring cell during propagation

• side faces of the neighboring cell during propagation (due to symmetry the solid
angles of such side faces are equal)

1

To calculate these subtended solid angles, I’ve used the following two methods for
each type:

1. triangulate the square, project the corners onto the unit sphere and use spherical
trigonometry to calculate the area of triangles.

2. use the following physical model: we assume that a point light is at the origin with
flux 4π (that is the radiant intensity is 1), then we measure the amount of light
(ie light flux) on the shape using physically correct integration. Since the radiant
intensity is 1 and constant, the light flux on the shape is equal to the solid angle
because of energy conservation:

solid angle =

∫
solid angle

1 dω =

∫
solid angle

intensity(ω) dω =

∫
shape surface

radiance(x) dx

2

2.1 Solid Angle Using Spherical Trigonometry

The next few pages contain Maple worksheets to calculate the solid angle (first for
the front faces, then the side faces). h is assumed to be cell width (it doesn’t matter
though due to direction normalizazion).

3

(1)(1)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

(2)(2)

Loading LinearAlgebra

9
11

(11)(11)

(8)(8)

(10)(10)

(7)(7)

(9)(9)

(12)(12)

(14)(14)

(13)(13)

7
11

isolate for delta

assign

isolate for alpha

assign

at 10 digits

0.400669685

(2)(2)

(5)(5)

(1)(1)

(4)(4)

(3)(3)

Loading LinearAlgebra

9
11

(8)(8)

(16)(16)

(15)(15)

(9)(9)

(12)(12)

(7)(7)

(11)(11)

(18)(18)

(14)(14)

(10)(10)

(13)(13)

(6)(6)

(17)(17)

1
3

isolate for C1

assign

isolate for C2

assign

isolate for alpha

assign

isolate for beta

assign

(22)(22)

(20)(20)

(21)(21)

(23)(23)

(6)(6)

(19)(19)

isolate for gamma1

assign

isolate for delta

assign

at 20 digits

0.42343135443673907668
at 5 digits

0.42347

2.2 Solid Angle Using Integration

To calculate the front facing square’s solid angle (ie the solid angle of the back face
of the neighboring cell), assume that the square lies parallel to the xy-plane with its
center at (0, 0, 3) (with side length = 2). We integrate the radiance of its surface points
p = (x, y, z), that is z = 3 constant and x and y from -1 to 1.

FrontFacingSolidAngle =

∫ 1

−1

∫ 1

−1
L(p) dp =

∫ 1

−1

∫ 1

−1
cos 6 p, z-axis

1

r2
dp

=

∫ 1

−1

∫ 1

−1

〈(0, 0, 1) , p〉
‖p‖

1

‖p‖2
dx dy

=

∫ 1

−1

∫ 1

−1
3
(
x2 + y2 + 9

)−3/2
dx dy

= 4 arctan
(

1/33
√

11
)

= 0.4006696844 . . .

To calculate the side facing square’s solid angle (ie the solid angle of the back face
of the neighboring cell), assume that the square lies parallel to the yz-plane with its
center at (1, 2, 0) (with side length = 2). We integrate the radiance of its surface points
p = (x, y, z), that is x = 1 constant, y from 1 to 3 and z from -1 to 1.

SideFacingSolidAngle =

∫ 1

−1

∫ 3

1

〈(1, 0, 0) , p〉
‖p‖

1

‖p‖2
dydz

=

∫ 1

−1

∫ 3

1

(
1 + y2 + z2

)−3/2
dy dz

= −1/3π + 2 arctan
(

3/11
√

11
)

= 0.423431354 . . .

3 Reflective Shadow Maps

The reflective shadow map papers only states that you store the ”flux emitted through
every pixel” in the flux render target. This means that you don’t store the total light
flux ΦL or use the total light flux to calculate the outgoing flux but instead, you base it
on the flux through the pixel: outgoing flux Φo = surface area A · radiant exitance M

E =

∫
Ω
Li(ωi) cos θi dωi

M =

∫
Ω
Lo(ωo) cos θo dωo

Lo =
cdiff
π

E cos θi

9

with E = I
r2

= 1
r2

ΦL
4π . Then:

Φo = A ·
∫

Ω
Lo(ωo) cos θo dωo (1)

= ALo(ωo)

∫
Ω

cos θo dωo (2)

= ALo(ωo)π (3)

= A
cdiff
π

ΦL

r2 4π
cos θi π (4)

=
cdiff
π

A

r2

ΦL

4π
cos θi π (5)

= cdiff ρ
ΦL

4π
cos θi (6)

= cdiff
ρ

4π
ΦL cos θi (7)

with ρ being the subtended solid angle of a surfel. If we assume a field of view of 90
degrees with aspect ratio 1, the solid angle of a single pixel can be approximated with:

4π

6

1

width× height

4 Light Injection

4.1 Intensity Formula Correction

Crytek’s LPV paper says that, if Ip(ω) is the radiant intensity of an VPL and np is its
normal and Φp the reflected flux, then:

Ip(ω) = Φp〈np, ω〉

However:

Φp =

∫
S2

Ip(ω)dω

If we expand the equation above:

Φp =

∫
S2

Φp〈np, ω〉dω = Φp

∫
Ω
〈np, ω〉 dω = Φp · π 6= Φp

I suggest the following correction factor:

Ip(ω) =
Φp

π
〈np, ω〉

That is, the original equation is divided by π as normalization factor.

10

4.2 Spherical Harmonics Analytical Basis Functions

The analytical presentation of the first four base functions is simple:

S0 (x, y, z) =
1

2
√
π

(8)

S1 (x, y, z) = −
√

3

2
√
π
y (9)

S2 (x, y, z) =

√
3

2
√
π
z (10)

S3 (x, y, z) = −
√

3

2
√
π
x (11)

To evaluate lighting with SH for some direction v, you first determine the coeffi-
cients/weights of the SH basis functions and then sum them up.

L =
∑
i

si Si (v)

See Stupid SH Tricks and Spherical Harmonic Lighting: The Gritty Details for more
information.

4.3 Spherical Harmonics Low-Order Rotation

Let’s assume we know the coefficients sz0, s
z
1, ... of the clamped cosine lobe around the z

axis, then we can determine the lighting in direction v for the cosine lobe around the
normal n by transforming it into the space where the normal coincides with the z axis
(ie rotate n onto the z axis):

L =
∑
i

szi Si (Rn→z v)

where Rn→z is a rotation matrix that rotates n onto z.
Before expanding this further, let’s first take a look at the coefficients of the clamped

cosine lobe:

sz0 =

√
π

2
=

∫
Ω

cos(φ)S0(ω) dω =
1

2
√
π

∫
Ω

cos(φ) dω (12)

sz1 = 0 =

∫
Ω

cos(φ)S1(ω) dω (13)

sz2 =

√
π

3
=

∫
Ω

cos(φ)S2(ω) dω (14)

sz3 = 0 =

∫
Ω

cos(φ)S3(ω) dω (15)

11

The y and x directions are 0 because the cosine lobe is centered isotropically around
the z axis.

So let’s look at the expanded version of this formula, if rT1 , rT2 , rT3 are the row vectors

of the matrix Rn→z, that is: v =
(x
y
z

)
and Rn→z =

(
rT1
rT2
rT3

)
. Then:

L =
∑
i

szi Si (Rn→z v) =
∑
i

szi Si

((
rT1 v

rT2 v

rT3 v

))
(16)

L = sz0 c0 (17)

+ sz1 (−c1) rT2 v (18)

+ sz2 c1 r
T
3 v (19)

+ sz3 (−c1) rT1 v (20)

with c0 := 1
2
√
π

and c1 :=
√

3
2
√
π

. Since sz1 = 0 and sz3 = 0, we can simplify the equation to

L = sz0 c0 + sz2 c1 r
T
3 v (21)

= sz0 c0 + sz2 c1 r31 x+ sz2 c1 r32 y + sz2 c1 r33 z (22)

= sz0 c0 + sz2 c1 r32 − y + sz2 c1 r33 z + sz2 c1 r31 x (23)

= sz0 c0 − sz2 (−c1) r32 − y + sz2 c1 r33 z + sz2 (−c1) r31 x (24)

= sz0 S0 (v)− sz2 r32 S1 (v) + sz2 r33 S2 (v)− sz2 r31 S3 (v) (25)

Now the question is: what is the third row of Rn→z? If we look at the inverse matrix
instead: Rz→n, we can immediately see that its third column has to be n, because

Rz→n
(0

0
1

)
= n

by construction. Since rotations are orthogonal matrices, the inverse is equal to the
transposed, so we can deduce that the third row of Rn→z is the same as the third

column of Rz→n, that is: n. Thus with n =
(nx
ny
nz

)
we get:

L = sz0 S0 (v)− sz2 ny S1 (v) + sz2 nz S2 (v)− sz2 nx S3 (v)

So the SH coefficients of the clamped cosine lobe along n are:

sn0 = sz0 =

√
π

2
(26)

sn1 = −sz2 ny = −
√
π

3
ny (27)

sn2 = sz2 nz =

√
π

3
nz (28)

sn1 = −sz2 nx = −
√
π

3
nx (29)

12

As you can see the coefficients are linear in n, which makes their evaluation quite simple.
Note: ”My” values are equal to the ones from Crytek’s LPV paper if you premultiply

them with the SH constants c0 and c1.

5 Geometry Injection

Little reminder: projected area is increasing with squared distance and not linearly (in
case anyone forgets, which can lead to stupid bugs).

output.surfelArea = 4.0 * posWorld.w * posWorld.w / RSMsize.x / RSMsize.y;

That is the real world area of the surface texel in the RSM is 4 / RSMsize.x / RSMsize.y
(ie texel size in image space), scaled with the squared distance.

5.1 Double-Sided Injection Problem

Crytek’s LPV paper only uses one-sided occlusion. It becomes obvious why, when you
look at how to implement double-sided occlusion injection. For a double-sided surface
element, you’d inject the surface area twice with flipped normals. Since only 4 SH coef-
ficients are used (which depend linearly on the normal direction except for the ambient
zeroth coefficient), this results in the cancellation of all but the ambient term.

Another idea is assuming a certain thickness of the material and using different area
ratios. However since the backside of a surface element would be farther away that way,
its area ratio would actually be bigger than the front-side’s ratio, which would result in
a face that is occluding more ”in the wrong direction”.

6 Propagation

6.1 Main Directions

The main direction of a front face is simply the normal of the face itself. The main
direction of a side face is also the direction towards the center of the side face. Eg for the

left side face (parallel to the yz-plane with x = cellsize/2) we have center =
(cellsize/2
cellsize

0

)
,

so the normalized direction is
(1/
√

5

2/
√

5
0

)
.

6.2 Intensity Propagation Correction

Crytek’s LPV paper uses the following formula for computing the flux to a neighbouring
face:

Φf =

∫
Ω
I(ω)V (ω) dω

13

and approximates it using the solid angle ∆ωf =
∫

Ω V (ω) dω and the central direction
ωc as

Φf =
∆ωf
4π
· I(ωc)

If we insert the definition of ∆ωf back into the formula we get:

Φf =
1

4π
I(ωc)

∫
Ω
V (ω) dω =

1

4π

∫
Ω
I(ωc)V (ω) dω

. If we assume that I(ωc) is constant, we immediately see that the division by 4π does
not make sense here.

6.3 Reprojection Formula Correction

Crytek’s LPV paper uses the formulas:

Φf =

∫
Ω

Φl〈nl, ω〉 dω

and
Φl = Φf/π

The integrand is exactly the intensity that had to be corrected in 4.1. So now we get:

Φf =

∫
Ω

1

π
Φl〈nl, ω〉 dω =

1

π
Φl

∫
Ω
〈nl, ω〉 dω =

1

π
Φl π = Φl

This also makes more sense because now energy conservation is obeyed during reprojec-
tion: now the whole flux that arrives at the face of the neighbouring cell is reprojected
into this cell and nothing is lost. However, because of the intensity correction, the net
value stays the same. This is just a correction to make the intermediate values physically
more correct.

7 Additional Implementation Details

Injecting the VPL into the LPV is done using SV RenderTargetArrayIndex to select the
volume slice in the light propagation volume. For this every texel of the RSM is rendered
as one point primitive. A geometry shader is used to set SV RenderTargetArrayIndex
depending on the z value of the point’s position.

14

